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In a Lagrangian system of coordinates, non-linear differential equations are obtained that describe the deformation of a massive 
extensible thread in a moving medium. Three specific problems with specified numerical parameters are solved by a numerical 
method developed by the author for solving systems of non-linear Integro-differential equations. 0 2003 Elsevier Science Ltd. 
All rights reserved. 

Problems of the deformation of threads and flexible tethered systems arise in the design of different 
objects in many areas of engineering and technology. Examples are the problem of the shape of a rope 
when exposed to an air flow [l], the problem of calculating orbital tethered systems [2, 31, and the 
problem of the deformation of filler fibres in the production of reinforced polymer composites [4]. Below, 
equations describing the non-linear deformation of a massive thread are obtained and solved for three 
special cases. The tensile force is examined as a function of the coefficient of relative elongation of the 
thread, which in turn is connected by a non-linear relation with the components of the displacement 
vector. The displacements and deformations of the thread are taken to be arbitrarily large. 

1. FORMULATION OF THE PROBLEM 

It is assumed that, in an orthogonal Cartesian system of coordinatesxi (i = 1,2,3), at the initial instant 
of time t = 0 the direction of the originally straight elastic thread with a mass m. per unit length is 
defined by the unit vector p = piei and when t > to the motion of the thread occurs in a medium whose 
velocity field is specified in the form u, = u,i(Xl, x2, x3, t)ei. External forces act on the thread, the intensity 
of which per unit initial length of the thread is equal to 

F = Fi(x,, x2, x3, t)ei. 

Taking as the Lagrangian variable the length of an arc of the thread S, it is possible to write expressions 
for the radius vectors r. and r of an arbitrary point of the thread in the frame of reference x1 at the 
initial and actual instants of time, for the displacement vector w, for the basis vectors go and g, and for 
the relative elongation 1 [15] 

r0 = s(p,e,), w = wiei, r = r. + w 

go = rb = piei, go. go = 1 

g = r’ = (pi + wi)e,, 1 = lgl - 1 
(1.1) 

A prime denotes differentiation with respect to S. 
To obtain the equations of motion at the actual instant of time t, two points of the thread are examined, 

bounding an infinitesimal elements of the thread ds; the point a, the basis vector of which is g, and the 
points al, for which 

r1 = r + dr, + dw, g, = (pI + wi + dw:)e, (1.2) 
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The unit vectors of the tangents at points a and aI are defined by the expressions 

T = tAgI kl = [(PI + w$ + (P, + w$ + (p3 + w;121’” 

51 = g,/(g,( = g/lel + gW3[(pi + ~$4 + Id WeA Ids 
(1.3) 

The element ds is acted upon by inertia forces F,~s, external forces Fds, and also forces acting from 
the medium during longitudinal flow R&s and transverse flow &ds. The vectors & and R, are determined 
using the velocity vector of the motion of the thread relative to the medium uo, at the actual instant of 
time 

where u = tiiei is the velocity of motion of the thread in the system of coordinates xi (the dot denotes 
differentiation with respect to time). The vector u. can be split into a longitudinal component uOT and 
a transverse component uOn, and also the normal unit vector n can be found 

% = (Qo * f)t, van = v. - uo7, n = vOn/(~Onl 

It is assumed that vectors R and R, can be represented in the form 

(l-5) 

R, = -cp(I~oll, Rev . ..k R, = -y@,,l, Re, . ..)n (1.6) 

where functions cp and tl~ may depend not only on the absolute values of the velocities and on the 
Reynolds number but also on other parameters of the thread and medium. 

At points a and al, the thread element ds is acted upon by tensile forces -Tz and (T + dT)zl 
respectively, where T is a scalar function of the relative elongation 

T = x(r) (1.7) 

Equating the principal vector of the forces acting on the thread element to zero, we obtain the equilibrium 
equation in vector form 

-TI + (T + dT)q + (F, + F + R, + R,)ds = 0 W-4) 

which is equivalent to the following three differential equations obtained by scalar multiplication of 
the left- and right-hand sides of equality (1.8) by ek 

@Xm~l~l*h + w;> + xtlg12 w; - (pk + w;)[(pi + w;)w;‘]} + 

+Ig13(-mo~k+Fk+R,k+R,k) = 0, k = 1,2,3 
(1.9) 

Below it is assumed that the thread moves in the x10x2 plane and at t = 0 coincides with the horizontal 
axis ox. In this special case 

PI = 1. p2 = p3 = 0, W2 = 0, W = wlel + w2e2 

x1 =s+w,, x2=w2 

Furthermore, the expression for the tensile force is taken in the form 

T= To + hl (1.10) 

where To is the initial tension of the thread and h is a constant parameter. Under these conditions, 
from system (1.9) it is possible to obtain two equations for calculating the functions w~(s, t) and 
W2(% 4 

AN1 + w;> + (To + Wlgl w; - ~kl-‘(l + w;)] + lg12(-motiii, + F, - qn, - ym,) = 0 

Aaw; + (To + hO[l&v;- al&w;1 + ~g12(-moti2 + F2 - cpz, - ym,) = o (1.11) 
a = (1 +w;>wy+w;w; 
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The system of equations obtained fairly accurately describes the motion of the thread at large 
displacements and deformations. It is obvious that, if the products of the functions w1 and w2 are 
neglected, the first equation of system (1.11) describes small longitudinal vibrations of a rod, and the 
second equation describes the transverse vibrations of a string [6]. 

2. NUMERICAL EXAMPLES 

The results of solving the system of equations (1.11) which describe the motion of a thread of length 
L, = 1 in certain special cases of boundary and initial conditions are given below. The solution was 
obtained using a method proposed by the present author, based on the use of interpolation procedures 
[7] and universal programs for solving two-dimensional boundary-value and initial-boundary-value 
problems [8]. 

2.1. The thread is fastened at its ends (at s = 0 and s = 1). The external forces and the resistance 
of the medium are ignored. The parameters of the thread are: T,, = 1, h = 2, and m. = 10. At the initial 
instant of time (at t = 0), a velocity is imparted to the particles of the thread in the transverse direction, 
given by the relation 

V, = I/* sin27rs (2.1) 

For system of equations (l.ll), the initial boundary-value problem was solved with the boundary and 
initial conditions 

w,(O, t) = w,(Q t) = 0, Wi(l,f) = w&r) = 0 

w,(s, 0) = w*(s, 0) = 0, ti,(s, 0) = 0, ti2(s, 0) = V.. sin27cs (2.2) 

A solution was obtained in the form of a sequence of time steps. On the segment [0, Lo], a grid with 
an odd number of nodes IZ, is superimposed. The power of the interpolation polynomial used [8] was 
taken to be equal to (n, + 1)/2. At each time step, a solution was obtained in a sequence of segments 
of length H,, onto which a grid with a number of nodes nt was superimposed. Consequently, the time 
step turns out to be equal to H,l(n, - 1). 

The initial conditions for the solution at the next step were determined from the solution at the 
preceding step. The iteration process is completed when the discrepancy in Eqs (1 .ll) reduces to a fixed 
small value. 

A feature of this extremely non-linear problem is that, when t >O, the thread executes free vibrations, 
and it is therefore possible to track that the law of conservation of energy is satisfied. At any instant of 
time, the sum of the kinetic and potential energy is equal to 

1 

= 1/2m,l [(b+,(s, t)$ + (ti*(s, t))*lh + j&s)[T, + 1~,ww~ I 
(2.3) 

0 0 

and this quantity when t > 0 should be equal to the value of the kinetic energy of the thread when 
t=O 

u, = &&is = ; (2.4) 
0 

For certain versions of the node grid and three instants of time t, Table 1 presents calculated values, 
with a time step h, = H,/(n, - 1) = 0.025, of the vertical displacement of the middle point of the thread 
W2( l/2, t) and the maximum deviation of the total energy from its precise value A = max ] U - U. ] , and 
also the length of the thread in the deformed state when t = 1.4, which was calculated from the formula 

1 I 

L = j(l+l)ds = j[(l+w;)2+w;z]1’2ds (2.5) 
0 0 
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Table 1 

Grid 

7x3 
9x3 

13 x 3 
17x3 

w(1/2,t, x 104 A x lo4 

L(t= 1.4) t t 

1.4 4.2 9.8 1.4 2.8 9.8 

1.4233 4620 -4520 -4240 34 35 58 
1.4219 4660 -4580 -4530 11 24 47 
1.4239 4684 -4669 - 1 7 
1.4240 4685 0.2 - - 

The three values of the time presented in Table 1 were selected such that they approximately 
corresponded to certain extremum values of the vertical displacement of the middle of the thread. It 
can be seen that, during deformation, the length of the thread increases by almost half its original value. 
It is natural that, as time passes, there is an increase in the deviation A, but this is small and even at 
t = 9.8 does not exceed 1%. However, if the action of forces of inertia in the horizontal direction is 
neglected in expression (2.3), the deviation increases to 5%. It must be emphasized that, when n, > 9, 
and consequently for a high order of approximation of the differential equations by algebraic equations, 
it proved impossible to obtain a solution of this problem over a long time interval, which seems to be 
due to the instability of the physical process. At the same time, even when n, = 9 and a power of the 
interpolating polynomial y1 = 4, the error of approximation is equal to 0(/z:+‘) = O(3 x lo-‘). In the 
solution of technical problems, such an error may be acceptable. As regards the power of the 
interpolating polynomial with respect to time, its minimum value iz = 2 (n, = 3) is optimal from the 
viewpoint of the stability of the computing process. 

2.2. The right-hand end of the thread with s = 1 is securely fixed while the left-hand end moves at 
constant angular velocity about the right-hand end in a circle of unit radius. The external forces and 
the resistance of the medium are ignored. The parameters of the thread are: To = 2, 3L = 4, and 
mo = 20. 

The boundary and initial conditions are 

w,(O, t) = 1- cos(0.2t), w,(l, t) = 0 

w,(O, f) = sin(0.2r), w,(l, t) = 0 

w,(s, 0) = w*(s, 0) = 0, Qs, 0) = I+*(& 0) = 0 
(2.6) 

The problem is solved for the following values of the parameters 

ns = 5, n, = 3, h, = 0.025 

Figure 1 shows the shape of the thread at various instants of time. At the start of the motion, the 
thread is distorted by forces of inertia, and then, during rotation about the right-hand stationary point, 
it executes vibrations, the period of which for the first mode Ti = 3.35. 

The results of this example confirm that the approach proposed is quite effective when investigating 
arbitrarily large displacements and deformations of elastic objects, the simplest example of which is a 
deformable thread. 

2.3. The thread is fastened at its ends (at s = 0 and s = 1). The parameters of the thread are: 
To = 1, h = 2 and m. = 20. The thread is acted upon by an external force 

F = 60( 1 -x,/2)exp(-5t)ez 

The resistance of the medium is taken into account only in the case of transverse flow, and here it is 
assumed that 
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The expressions for the square of the velocity and the normal unit vector are obtained from relations 
(1.5) 

[I+,~/* = Iv-(u,,. r)rl* = (A*+ B2)llg14 

A = ti&-ti*(l +w;>w;, B = G*(l +w;)*-i,(l +w;>w; 

n = (A* + B*)-“*(Ae, + Be,) 

(2.7) 
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The system of equations (1.11) can now be written in the form 

~~(l+w;)+u-iJ+w[lgl w;’ - cxlgl-‘( 1 + w;)] + [- m,~g12iC, -kB(A2 + B2)-2] = 0 

Law; + (T, + hl)[lglw;‘-algl-‘w;] + [-m,(g12ti2 + 

+ 60( 1 -(s + w,)/2)exp(-5t) -kB(A* + B2)-2] = 0 
P-8) 

a = (1 +w;>w;1+,;,1; 

The boundary and initial conditions differ from conditions (2.2) only in the fact that, in the case in 
question, the final condition is also homogeneous: &(s, 0) = 0. 

Practically identical results were obtained on grids with n, = 5, IZ, = 3, h, = 0.05, and n, = 7, n, = 3, 
h, = 0.025, and they are shown in Fig. 2, where the solid curves represent the positions of the thread 
at various instants of time t, ignoring the action of the medium (k = 0), and the dashed curves represent 
the positions of the thread when this action is taken into account with k = 15. It can be seen that the 
thread receives large deformations and displacements: at the instants of maximum deviation from the 
position of static equilibrium; its length is increased by 84%. 
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